Total-variation-diminishing implicit–explicit Runge–Kutta methods for the simulation of double-diffusive convection in astrophysics
نویسندگان
چکیده
منابع مشابه
2-stage explicit total variation diminishing preserving Runge-Kutta methods
In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...
متن کاملDouble diffusive reaction-convection in viscous fluid layer
In the present study, the onset of double diffusive reaction-convection in a uid layer with viscous fluid, heated and salted from below subject to chemical equilibrium on the boundaries, has been investigated. Linear and nonlinear stability analysis have been performed. For linear analysis normal mode technique is used and for nonlinear analysis minimal representation of truncated Fourier serie...
متن کاملBounds on double-diffusive convection
We consider double-diffusive convection between two parallel plates and compute bounds on the flux of the unstably stratified species using the background method. The bound on the heat flux for Rayleigh–Bénard convection also serves as a bound on the double-diffusive problem (with the thermal Rayleigh number equal to that of the unstably stratified component). In order to incorporate a dependen...
متن کامل2-stage explicit total variation diminishing preserving runge-kutta methods
in this paper, we investigate the total variation diminishing property for a class of 2-stage explicit rung-kutta methods of order two (rk2) when applied to the numerical solution of special nonlinear initial value problems (ivps) for (odes). schemes preserving the essential physical property of diminishing total variation are of great importance in practice. such schemes are free of spurious o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2012
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2011.12.031